
NASA CASE NO.

PRINT FIG.

NPO-18553-I-CU

NOTICE

The invention disclosed in this document resulted from

research in aeronautical and space activities performed under

programs of the National Aeronautics and Space Administration. The

invention is owned by NASA and is, therefore, available for

licensing in accordance with the NASA Patent Licensing Regulation

(14 Code of Federal Regulations 1245.2).

To encourage commercial utilization of NASA-Owned inventions,

it is NASA policy to grant licenses to commercial concerns.

Although NASA encourages nonexclusive licensing to promote

competition and achieve the widest possible utilization, NASA will

consider the granting of a limited exclusive license, pursuant to

the NASA Patent Licensing Regulations, when such a license will

provide the necessary incentive to the licensee to achieve early

practical application of the invention.

Address inquiries and all applications for license for this

invention to NASA Patent Counsel, NASA Resident Office-JPL, Mail

Code 180-801, 4800 Oak Grove Drive, Pasadena, CA 91109.

Approved NASA forms for application for nonexclusive or

exclusive license are available from the above address.

Serial Number:

Filed Date:

07/908,677

June 29, 1992

(NAS A-Case-_IPe- I d553- I-CU) FAST TEMPqRAL

NFJPAL ttARNI_1O USING TEACHER FqRCING Patent

AD)I ic,_:ion (t_ASA) _ p

G31o3

NRO-JPL

l,,_ " 1Q_
N92-30085--"

Unclas

0111142

Inventors: Nikzad Toomarian JPL Case No. 18553
Jacob Bahren NASA Case No. NPO-18553-I-CU

Contractor: Jet Propulsion Laboratory Date: June 22, 1992

.

i0

15

2O

FAST TEMPORAL NEURAL LEARNING

USING TEACHER FORCING

AWARDS ABSTRACT

A neural network is trained to output a time dependent

target vector defined over a predetermined time interval in

response to a time dependent input vector defined over the

same time interval by applying corresponding elements of

the error vector, or difference between the target vector

and the actual neuron output vector, to the inputs of

corresponding output neurons of the network as corrective

feedback. This feedback decreases the error and quickens

the learning process, so that a much smaller number of

training cycles are required to complete the learning

process. A conventional gradient descent algorithm is

employed to update the neural network parameters at the end

of the predetermined time interval. The foregoing process

is repeated in repetitive cycles until the actual output

vector corresponds to the target vector. In the preferred

embodiment, as the overall error of the neural network

output decreases during successive training cycles, the

portion of the error fed back to the output neurons is

decreased accordingly, allowing the network to learn with

greater freedom from teacher forcing as the network

parameters converge to their optimum values. The invention

may also be used to train a neural network with stationary

training and target vectors.

FilingL-_f<'e_ '1 _-_--_-S-_ ,1-
I

Co:-,_,/:_':o. NAS7-9i8

Con:::/ :-r C :I.:c:hlJPL

Pa::;:! :.i ;_ :, ,", 91109

',_,_) (Zip)

5

10

15

2O

JPL Case No. 18553 Patent Application
NASA Case No. NPO-18553-1-CU
Attorney Docket No. JPL/025-92

FAST TEMPORAL NEURAL LEARNING USING

TEACHER FORCING

BACKGROUND OF THE INVENTION

Origin of the Invention:

The invention described herein was made in the performance of work

under a NASA contract, and is subject to the provisions of Public Law

96-517 (35 USC 202) in which the contractor has elected not to retain

title.

Technical Field:

The invention relates to training neural networks with time depen-

dent phenomena and to the problems associated therewith, including

reducing the number of computations required and increasing the qual-

ity or fidelity of the neural network output.

Background Art:

Recently, there has been a tremendous interest in developing learn-

ing algorithms capable of modeling time-dependent phenomena. In par-

ticular, considerable attention has been devoted to capturing the dynam-

ics embedded in observed temporal sequences.

25

3O

In general, the neural architectures under consideration may be clas-

sifted into two categories:

* Feedforward networks, in which back propagation through time can

be implemented. This architecture has been extensively analy_c_;

and is widely used in simple applications due, in particular, to the

straightforward nature of its formalism.

* Recurrent networks, also referred to as feedback or fully connected

networks, which are currently receiving increased attention. A key

advantage of recurrent networks lies in their ability to use informa-

tion about past events for current computations. Thus, they can

provide time-dependent outpu :s for both xlme-dependent as wel as
Serial No. 0 7/? ClJ :'._ _ "7 7

/
'1Filing n^_',._L_: K,, - _ _] - __f'9"-

Co., :i-), l'.i "_7-:_ ![;

C,u..i.., - ;; C ::::j.': :-

time-independent inputs.

5

10

15

2O

One may argue that, for many real world applications, the feedfor-

ward networks suffice. Furthermore, a recurrent network can, in prin-

ciple, be unfolded into a multilayer feedforward network. A detailed

analysis of the merits and demerits of these two architectures is beyond

the scope of this specification. Here, we will focus only on recurrent

networks.

The problem of temporal learning can typically be formulated as

a minimization, over an arbitrary but finite time interval, of an appro-

priate error functional. The gradients of the functional with respect to

the various parameters of the neural architecture, e.g., synaptic weights,

neural gains, etc. are essential elements of the minimization process and,

in the past, major efforts have been devoted to the efficacy of their com-

putation. Calculating the gradients of a system's output with respect to

different parameters of the system is, in general, of relevance to several

disciplines. Hence, a variety of methods have been proposed in the liter-

ature for computing such gradients. A recent survey of techniques which

have been considered specifically for temporal learning can be found in

Pearlmutter, B.A. (1990) "Dynamic recurrent neural networks," Tech-

nical Report CMU-CS-90-196, School of Computer Science, Carnegie

Mellon University, Pittsburgh, PA. We will briefly mention only those

which are relevant to the present invention.

25

3O

Sato proposed, at the conceptual level, an algorithm based upon

Lagrange multipliers. However, his algorithm has not yet been validated

by numerical simulations, nor has its computational complexity been

analyzed. Williams and Zipser [Williams, R.J.. and Zipser, D. (1989)

"A learning algorithm for continually running fully recurrent neural net-

works", Neural Computation, Vol.1, No. 2, pp. 270-280] presented a

scheme in which the gradients of an error functional with respect to net-

work parameters are calculated by direct differentiation of the neural

activation dynamics. This approach is computationally very expensive

and scales poorly to large systems. The inherent advantage of the scheme

is the small storage capacity required, which scales as O(N3), where N

2

denotes the size of the network.

5

10

15

Pearlmutter, on the other hand, described a variational method

which yields a set of linear ordinary differential equations for backpropa-

gating the error through the system. These equations, however, need to

be solved backwards in time, and require temporal storage of variables

from the network activation dynamics, thereby reducing the attractive-

ness of the algorithm. Recently. the inventors herein [Toomarian, N.

and Barhen, J. (1991) "Adjoint operators and non-adiabatic algorithms

in neural networks," Applied Mathematical Letters, Vol. 4, No. 2, pp.

69-73] suggested a framework formalism which enables the error propa-

gation system of equations to be solved forward in time, concomitantly

with the neural activation dynamics. A drawback of this novel approach

came from the fact that their equations had to be analyzed in terms

of distributions, which precluded straightforward numerical implemen-

tation. Finally, Pineda proposed combining the existence of disparate

time scales with a heuristic gradient computation. The underlying adia-

batic assumptions and highly approximate gradient evaluation technique,

however, placed severe limits on the applicability of his method.

20

25

3O

Analogy to real-life behavior motivates the learning paradigm of the

present invention described below. Suppose that a parent wants to teach

his child to ride a bicycle. Clearly, the parent will not stay home, let his

child ride the bicycle and, from time to time, tell him how good or bad he

is performing (just as it happens in classical supervised learning). The

best wav to train the child would be for the parent to accompany him

during the riding sessions. This suggests that different dynamical sys-

tems should be considered for the two basic stages of learning and recall

(or generalization). However, the functional form of the neural dynamics

used during the learning stage should smoothly evolve toward the func-

tional form of the neural dynamics to be used during recall, after training

is completed. In this context, the network dynamics during the learn-

ing stage should include an instantaneous signal from the teacher on its

performance. This necessitates a mechanism for incorporating informa-

tion regarding the desired output directly into the activation dynamics.

Such a mechanism has been referred to as teacher forcing. Williams and

Zipser [Williams, R.J., and Zipser, D. (1988) "A learning algorithm for

continually running fully recurrent neural networks," Technical Report

ICS Report 8805, UCSD, La Jolla, CA 92093], to the best of our knowl-

edge, have been the primary users of teacher forcing. They limited their

algorithm to a discrete- time problem, replacing the output of the net-

work with desired output values at each time step.

10

SUMMARY OF THE INVENTION

The present invention is a new continuous form of teacher forcing,

and appropriately modifies the activation dynamics of a simple additive

neural network during its learning stage. The temporal modulation of

teacher forcing is analyzed as learning proceeds, so that the activation

dynamics of the learning stage can actually be reduced to the activation

dynamics of the recall stage.

15

2O

25

3O

In accordance with the invention, a neural network is trained to out-

put a time dependent target vector defined over a predetermined time

interval in response to a time dependent input vector defined over the

same time interval by applying corresponding elements of the error vec-

tor, or difference between the target vector and the actual neuron output

vector, to the inputs of corresponding output neurons of the network as

corrective feedback. This feedback decreases the error and quickens the

learning process, so that a much smaller number of training cycles are

required to complete the learning process. The learning process employs

a conventional gradient descent algorithm to update the neural network

parameters (e.g., synapse weights mid/or neuron gains) at the end of the

time interval. The foregoing process is repeated in repetitive cycles until

the actual output vector corresponds to the target vector. It has been

found that not only is the number of required training cycles decreased

but that the quality or fidelity of the neural network output is signifi-

cantly increased by the invention. In the preferred embodiment, as the

overall error of the neural network output decreases during successive

training cycles, the portion of the error fed back to the output neurons

is decreased accordingly, allowing the network to learn with greater free-

4

5

10

dom from teacher forcing as the network parameters converge to their

optimum values.

BRIEF DESCRIPTION OF THE DRAWINGS

Fig. la is a diagram of a neural network of the prior art.

Fig. lb is a diagram of a neural network training architecture of the

prior art.

Fig. 2 is a diagram of a neural network numerical training archi-

tecture of the prior art including error feedback which nulls the error at

each numerical step.

Fig. 3 is a time domain diagram illustrating the behavior of the

neural network training architecture of Fig. 2.

15 Fig. 4 is a simplified diagram of a neural network training architec-

ture embodying the present invention.

20

Fig. 5 is a time domain diagram illustrating the behavior of the

neural network training architecture of Fig. 4.

Fig. 6 is a system diagram corresponding to the neural network

training architecture of Fig. 4.

25

Fig. 7 is a flow diagram illustrating the operation of the neural

network training architecture of Fig. 4 using a generic gradient descent

algorithm for computing the neural network parameter changes during

training.

30

Fig. S is a system diagram illustrating a preferred embodiment of

the system of Fig. 5.

Fig.'s 9a and 9b together constitute a flow diagram illustrating the

operation of the neural network training architecture of Fig. 4 for an em-

5

bodiment employing a particular type of conventional gradient descent

algorithm.

Fig.'s 10, 11 and 12 illustrate different simulation results of a neural

network learning a circular motion using the invention.

Fig. 13 is a graph of the error as a function of the number of learn-

ing iterations for each of the cases illustrated in Fig.'s 10-12.

10

Fig.'s 14, 15 and 16 illustrate different simulation results of a neural

network learning a figure-eight motion using the invention.

Fig. 17 is a graph of the error as a function of the number of learn-

ing iterations for each of the cases illustrated in Fig.'s 14-16.

15

DETAILED DESCRIPTION OF THE INVENTION

Temporal Learning Framework:

We formalize a neural network as m_ adaptive dynamical system

whose temporal evolution is governed by the following set of coupled

nonlinear differential equations:

2O

25

3O

where u,_ represents the output of the nth neuron (un(0) being the initial

state), and Tnm denotes the strength of the synaptic coupling from the

m-th to the n-th neuron. The constants _,, characterize the decay of

neuron activities. The sigmoidal functions gn(') modulate the neural re-

sponses, with gain given by 7n; typically, g,(v_x) = tanh(vnx). In order

to implement a nonlinear functional mapping from an N1- dimensional

input space to an No-dimensional output space, the neural network is

topographically partitioned into three mutually exclusive regions. As

shown in Figure la, the partition refers to a set of input neurons SI, a

set of output neurons So, and a set of "hidden" neurons SH. Note that

this architecture is not formulated in terms of "layers,, and that each

6

neuron may be connected to all others including itself.

5

10

Let _(t) (the overhead bar denotes a vector) be an N- dimensional

vector of target temporal patterns, with non zero elements, an(t), in the

input and output sets only. When trajectories, rather than mappings,

are considered, components in the input set may also vanish. Hence,

the time- dependent external input term in Eq. (1), i.e., I12(t), encodes

component-contribution of the target temporal pattern via the expres-

sion

{c_,(t) if n E $I (2)I'(/) = 0 if r/ E SH (-J SO

15

2O

To proceed formally with the development of a temporal learning

algorithm, we consider an approach based upon the minimization of an

error functional, E, defined over the time hlterval [to, tf] by the following

expression

Aoz fi'o 1 dt = Fdt (3)
12

where the error component, e,,(t), represents the difference between the

desired and actual value of the output neurons, i.e.,

a.(t) - un(t) ifn e Soe,,(t) = 0 ifn ESttOSH (4)

25

3O

In our model, the internal dynamical parameters of interest are the

strengths of the synaptic interconnections, T12m, the characteristic decay

constants, _,,, and the gain parameters, 7,1. They can be represented as

a vector of M [where : _]_l = N _"+ 2N] components

We will assume that the elements of f are statistically independent. Fur-

thermore, we will also assume that, for a specific choice of parameters

7

and set of initial conditions, a unique solution of Eq. (1) exists. Hence,

the state variables fi are an implicit function of the parameters/5. In the

rest of this paper, we will denote the tt th element of the vector p by Pu

(# = 1,...,M).

5

10

15

2O

25

3O

Traditionally, learning algorithms are constructed by invoking Lya-

punov stability arguments, i.e., by requiring that the error functional be

monotonically decreasing during learning time, 7. This translates into

dE _ dE dp. <0 (6)

One can always choose, with 7/> 0

@, dE

dT - ,ldp. (7)

which implements learning in terms of an inherently local minimization

procedure. Attention should be paid to the fact that Eqs. (1) and

(7) may operate on different time scales, with parameter adaptation

occurring at a slower pace. Integrating the dynamical system, Eq.(7),

over the interval [T, 7 + /k7], one obtains,

,-+A,- dEp.(_ + zx_) = p.(T) - __T alp---2d_ (8)

Equation (8) implies that, in order to update a system parameter pu,

one must evaluate the "sensitivity" (i.e., the gradient) of E, Eq. (3),

with respect to Pu in the interval [r, r + /kT]. Furthermore, using Eq.

(3) and observing that the time integral and derivative with respect to

Pu commute, one can write

dE_ _i s d___F_F j(tl I OF _i I OF O__fi_dt (9)dp u dp u dt = Op u dr+ Oft Opu

This sensitivity expression has two parts. The first term in the Right

Hand Side (RHS) of Eq.(9) is called the "direct effect", and corresponds

8

5

to the explicit dependence of the error functional on the system parame-

ters. The second term in the RHS of Eq. (9) is referred to as the "indirect

effect", and corresponds to the implicit relationship between the error

functional and the system parameters via _. In our learning formalism,

the error functional, as defined by Eq. (3), does not depend explicitly

on the system parameters; therefore, the "direct effect" vanishes, i.e.,

OF
= o (loa)

Op.

10

15

Since F is known analytically (viz. Eqs. (3) and (4)), computation of

OF/Ofl is straightforward. Indeed

OF
= - e. (10b)

c3u,_

Thus, to enable evaluation of the error gradient using Eq. (9), the "in-

direct effect" matrix vO_/0/_ should, in principle, be computed.

2O

25

3O

TEACHER FORCING

The neural activation dynamics specified by Eqs. (1) and (2) does

not include explicit information regarding the desired network output.

If these equations are used in conjunction with the learning formalism

described in the previous section, the network parameters (i.e., the ele-

ments of/3) will be modified at the end of a trajectory, i.e., at time t f,

as shown schematically in Figure lb. Such a parameter adaptation is

based upon the total error between the desired and the actual output of

the network, accumulated over the interval [to, tl]. Referring to Fig. lb,

a neural network 2 is stimulated by a time-varying training vector I(t)

to produce a time-varying output vector u(t). A subtractor 4 subtracts

the output vector u(t) from a time-varying target vector a(t) to produce

a time-varying error vector e(t). An integrator 6 integrates the error

vector e(t) over the time period of the time-varying training vector I(t).

At the end of the time period, the result of this integration is used by a

gradient descent algorithm to change the parameters (e.g., the synapse

9

5

10

15

2O

25

3O

weights) of the neural network in such a manner as to reduce the output

of the integrator 6 in the next time period. In our earlier analogy to

real-life behavior, this would correspond to a parent staying home, let-

ting his child ride a bicycle and, after each trial, telling him all the errors

he made. "Conventional" supervised learning operates in this fashion,

and usually takes a great deal of iterations to produce the desired results.

In order to overcome this difficulty, we consider the concept of

teacher forcing, i.e., driving the output neurons to desired values in fi-

nite time. Williams and Zipser [Williams, R.J., and Zipser, D. (1988)

"A learning algorithm for continually running fully recurrent neural net-

works," Technical Report ICS Report 8805, UCSD, La Jolla, CA 92093]

disclose forcing in a similar context. Their focus, however, is on discrete

time problems. To highlight the differences between the two approaches

we make the following observations. By definition, the conventional out-

put of a network at time step (t + 1), without teacher forcing, is a function

of the external inputs to the network and of the networks' states at time

step (t), i.e., in our notation,

u,_(t + 1) = g,,[Ii(t),uj(t),f]

where n E So, i E SI and j E SIUSH OSo. To introduce teacher forcing,

Williams and Zipser replace the output of the network with the desired

output vahles at time step (t). This means that

u,_(t + 1) = g,,[Ii(t),ttj(t),a.(t),i)]

where n E So, i E St and j E SI (2 SH. The network parameters can be

updated either at the end of each time step, or at the end of the trajec-

tory, i.e., at time tf. A schematic block diagram of this model, in which

the parameters are updated at the end of the trajectory, is given in Fig-

ure 2. Referring to Fig. 2, at time t the neural network is "forced" to an

output vector equal to the current target vector a(t). The neural network

then responds to the current training vector I(t) to produce an output

vector u(t+l) at the next time step t+l. The subtractor 4 subtracts the

output vector u(t+l) from the target vector a(t+l) of the next time step

10

t+l to produce an error vector e(t+l). Thereafter, the operation of the

model of Fig. 2 is analogous to that of Fig. lb. The temporal behavior

of this model is illustrated in Fig. 3, in which the neuron outputs are

forced to the training target (zero-error) values at the end of each time

step. Since the network outputs, un(t + 1), n E So, are dependent upon

the desired values an(t) of the network outputs at time step t, the algo-

rithm can be interpreted as training the network to capture the velocity

of given points on the trajectory, rather than the trajectory itself. In

our earlier analogy, each time interval may be viewed as a learning ses-

sion at the end of which the parent is correcting the child's performance.

10

15

20

25

30

The teacher forcing paradigm of the present invention, on the other

hand, stems from feedback control. In such a scheme, with continuous

network dynamics, the error between the actual and the desired outputs

is fed back, as inputs to the network output set neurons. A schematic

block diagram of the invention is presented in Figure 4. Referring to Fig.

4, on a simplistic level the operation of the invention is analogous to the

model of Fig. lb discussed above. However, the invention modifies the

error vector e(t) by a function 1(t) and feeds the modified error vector

back to the neural network 2 in real time. Preferably, this feedback is

applied directly to the inputs of the array of output neurons of the neural

network 2. As can be seem the parameters of the network are updated

based upon the error accunmlated over the length of the trajectory, i.e.,

over the interval [to, ts]. Again, by analogy, this scheme corresponds to

a parent accompanying his child and holding the bicycle during the tra-

jectory, to keep him oil the right track as much as possible. At the end

of the trajectory the parent would explain to his child what went wrong

and where, so that corrective action can be taken for the next round. In

order to incorporate this teacher forcing into the neural learning formal-

ism presented earlier, the time-dependent input to the neural activation

dynamics, Eq.(1). i.e.. I,,(t) as given by Eq. (2), is modified to read:

a,,(t) if n ESI
In(t) = 0 if n E SH (11)

A[a,(t)]l-Z[a,,(t) - u,(t)] z if n E So

At this stage, A and/'3 are assumed to be positive constants. The purpose

11

10

15

of the term [a,(t)] 1-z is to insure that I,(t) has the same dimension as

a_(t) and u_(t). It (1989) has been demonstrated that in general, for

/3 = (2i + 1)/(2j + 1), i < j and i and j strictly positive integers,

an expression of the form [an - un] z induces a terminal attractor phe-

nomenon for the dynamics described be Eq. (1). Barhen et al. [Barhen,

J., Toomarian, N. and Gulati, S. (1990) "Adjoint operator algorithms

for faster learning in dynamical neural networks," in David S. Touretzky

(Ed.), Advances in Neural Information Processing Systems, Vol. 2, pp.

498-508, San Mateo, CA (Morgan Kaufmann); and, Barhen, J., Toomar-

ian, N. and Gulati, S. (1990) "Application of adjoint operators to neural

learning," Applied Mathematical Letters, Vol. 3, No. 3, pp. 13-18] have

considered terminal attractor dynamics induced from the input set, SI,

rather than the output set, So. They have observed that such a dynamics

enables to learn time-independent mappings much faster than backprop-

agation. This provided the motivation for choosing /3 - 7/9 for the

numerical simulations described below in this specification. Simulations

with other positive constants, such as _3 - 1, have produced, qualita-

tively, similar results, albeit over a longer training period. A study of

the sensitivity of the results to the choice of/3 is beyond the scope of

this specification.

2O

25

3O

When learning is successfltlly completed [i.e., e,,(t) = 0], teacher

forcing will vanish, and the network will revert to the conventional dy-

namics given by Eqs. (1) and (2). However, there might be instances

where the error functional can not be reduced to zero, implying that

the teacher forcing term will not vanish as learning proceeds. Thus, a

discrepancy in results between the learning and recall mode of the net-

work should be expected. In an attempt to overcome this problem, we

recall another lesson from life. When a parent teaches his child to ride a

bicycle, at early stages he keeps his hands on the bicycle, accompanying

the child. However, as soon as the child shows some learned skills in con-

trolling himself, the parent will take his hands off more and more often,

to let the child ride independently. In this vein, the teacher's interven-

tion in the learning process preferably decreases as learning progresses.

Specifically, in Equation (1) A may" be modulated in time as function of

12

the error functional, according to

A(r) = 1 - e (12)

The above expression should be understood as indicating that, while

A varies on the learning time scale, it remains at essentially constant lev-

els during the iterative passes over the interval [to, t f].

10

15

2O

25

30

The behavior in a time continuum of the neural network in the train-

ing architecture of Fig. 4 is illustrated in Fig. 5, in accordance with the

temporal evolutionary behavior defined by equation (1). At a given time

t, the output of a given output neuron is u(t) while the target value for

that neuron is a(t), which differs fi'om the actual neuron output by an

error e(t). The feedback of the error e(t), illustrated in Fig. 4, reduces

the error at the next. time differential, t+dt, by an amount f[e(t)] which

is a function of the error e(t). Thus, without the invention, the neuron

output at the next time differential t+dt would have been u'(t+dt), but

with the invention the error at t+dt is reduced by f[e(t)] to produce

a neuron output u(t+dt) which is closer to the target output a(t+dt).

The overall result is that the total error E(T) of equation (3) is reduced.

In accordance with equation (12), the amount of correction, namely the

proportion of the error e(t) fed back to the output neuron, is reduced as

the total error E(r) of equation (3) is reduced at the end of each learning

cycle of time duration /_r = [to, tl].

A significant advantage of the invention is that it works in the time

continuum of the differential equation of Equation (3), while the tech-

nique of Fig.'s 2 and 3 is a numerical simulation not realizable using

analog neurons.

Fig. 6 illustrates a very tutorial example corresponding to the ar-

chitecture of Fig. 4, in which the error e(t) reduced by a factor of 1-

exp[E(7)] is directly fed back to the inputs of the output neurons. As

13

5

10

15

2O

shown in Fig. 6, the neural network 10 includes a set of input neurons

12, a set of hidden neurons 14 and a set of output neurons 16. The neu-

rons 12, 14, 16 are selectively interconnected through weighted synapses

(not shown in Fig. 6) whose weights are determined, along with the

gains of the neurons, during a preliminary training exercise. During this

exercise, a training set of time-dependent neuron inputs are applied dur-

ing a predetermined time interval to the inputs of the input neuron_ lp

which produces a set of neuron outputs u(t). An error vector e(t) is

determined by a subtractor 18 subtracting the vector of neuron outputs

u(t) from the vector of target neuron outputs a(t). All elements of the

error vector e(t) are squared and summed and integrated over the pre-

determined time interval by the integrator 20 to produce the total error

E(_') of Equation 3 at the end of the current training cycle, which is

stored in a register 22. A nmltiplier 24 multiplies each component of the

error vector e(t) by the factor 1- exp[E(r)], and the product is applied as

feedback to the input of the corresponding output neuron 16. A conven-

tional gradient descent algorithm 26. using the output of the integrator

20 and the current values of the neuron gains and synaptic weights of

the neural network 10. computes the desired changes to the gains and

weights at the end of the predetermined time interval, which are then

implemented in the neural network 10. The process is then repeated in

successive cycles with a cyclic period equal to the predetermined time

interval, until the total error E(7) reaches zero.

25

3O

The operation of the svstem of Fig. 6 is illustrated in Fig. 7. Prelim-

inarily, the neuron temporal behavior during the evolutionary learning

process is defined by the differential equation of Equation (1) (block 30

of Fig. 7) and a training set is defined for the inputs to the input neurons

12 and for target outputs of the output neurons 16 (block 32 of Fig. 7).

The training set neuron inputs are time dependent functions over the

predetermined time interval. Next. the training set neuron inputs are

applied to the inputs of the input neurons 12 for the predetermined time

interval /_r = [to, t/] (block 34 of Fig. 7) while the errors e(t) between

the outputs of the output neurons 16 and the desired target outputs are

monitored (block 36). The squares of the errors are summed and in-

14

5

tegrated over the predetermined time period (block 38) to produce the

total error E(T) for the current learning cycle. The gradient descent al-

gorithm is then performed (block 40) to compute the changes to each of

the neural network parameters (e.g., neural gains and synaptic weights),

and these changes are then added to the corresponding neural network

parameters (block 42). If the total error E(T) of the current learning

cycle is zero (or below some predetermined threshold), then the training

session is finished (YES branch of block 44). Otherwise (NO branch of

block 44), the system proceeds to the next learning cycle (block 46) and

the process is repeated starting at block 34 of Fig. 7.

10

15

20

The preferred embodiment of the invention is illustrated in Fig. 8.

In Fig. 8, the error e(t) is scaled before being applied as feedback to the

neural network 10. First, the error e(t) is raised to a selected exponential

power/3 by a processor 50, while the target output a(t) is raised to a

complementary exponential power 1 -/3 by a processor 52. The results

are combined by a nmltiplier 54 and the product is input to the multiplier

24. The gradient descent algorithm 26 transmits neural gain adjustments

to the neurons 12, 14, 16 and transmits synaptic weight adjustments to

the synapses 53 in order to adjust the neuron gains and synapse weights

at the end of each time interval. The gradient descent algorithm com-

putes these adjustments based upon the output of the integrator 20 in a

well- known manner. The skilled worker may devise various alternative

techniques for scaling e(t) depending upon the specific application of the

invention.

25

30

GRADIENT DESCENT ALGORITHMS

The efficient computation of system response sensitivities (e.g., error

functional gradients) with respect to all parameters of a network's archi-

tecture plays a critically important role in neural learning. As mentioned

previously herein, the gradient descent algorithm 26 may be any suitable

gradient descent algorithm of the prior art. The following describes how

one of the best gradient descent algorithms is employed in the invention.

Direct Approach Gradient Descent Algorithm

15

5

Let us differentiate the activation dynamics, Eq. (1), including the

teacher forcing, Eq. (11), with respect to p_. We observe that the time

derivative and partial derivative with respect to Pt, commute. Using the

shorthand notation 0(..-)/0p_ = (...),_ wc obtain a set of equations

referred to as "Forward Sensitivity Equations" (FSEs):

/tn,, + _,_ Anm urn,, = Sn,,ltn,p = 0

t>O
t=O (13)

in which

10

15

2O

25

3O

.4,,, = (_:,- % g_, OI,/c)u,_)(S,_m - g_ T,m (14)

S,_,. = -u,,Sp.,_. +%gi, Eum 6".,T._ +g,_,_(ET,_.,um+I.)Sp.,_. (15)
111 VII

In the above expressions, g:, represents the derivative of g_ with respect

to its arguments, 5 denotes the Kronecker symbol and Sn,, is defined

as a nonhomogeneous "source". The source term contains all explicit

derivatives of the neural activation dynamics, Eq. (1), with respect to

the system parameters, pt,. Hence, it is parameter dependent and its size

is (N x M). The initial conditions of the activation dynamics, Eq.(1),

are excluded from the vector of system parameters i6. Thus, the initial

conditions of the FSEs will be taken as zero. Their solution will provide

the matrix cgfi/tgfi needed for computing the "'indirect effect" contribu-

tion to the sensitivity of the error functional, as specified by Eq. (9).

This gradient descent algorithm is, essentially, similar to the scheme pro-

posed in the above-referenced publication by Williams and Zipser (1989).

Computation of the gradients using the forward sensitivity formalism re-

quires solving Eq. (13) M times, since the source term, Sn,_,, explicitly

depends on p,. This system has N equations, each of which requires

multiplication and summation over N neurons. Hence, the computa-

tional complexity, measured in terms of multiply-accumulates, scales like

N 2 per systeni parameter, per time step. Let us assume, furthermore,

that the interval [to, tl] is discretized into L time steps. Then, the to-

tal number of multiply-accumulate operations scales like N4L. Clearly,

such a scheme exhibits expensive scaling properties, and would not be

16

very practical for large networks. On the other hand, since the FSEs

are solved forward in time, along with the neural dynamics, the method

also has inherent advantages. In particular, there is no need for a large

amount of memory. Since u,,,,, has N 3 + 2N 2 components, the storage

requirement scales as O(N3).

10

15

If the foregoing is employed for the gradient descent algorithm 26

of Fig. 6, then the step of performing a gradient descent algorithm of

Fig. 7 (block 40 of Fig. 7) may be broken into steps 40a, 40b and 40c as

illustrated in Fig. 9b. Specifically, the first step (block 40a of Fig. 9b)

of the gradient descent algorithm 26 is to derive the forward sensitivity

equations (Equations 13-15) from the neural learning behavior (Equa-

tion 1). The next step is to solve the forward sensitivity equations once

for each of the M neural network parameters (block 40b of Fig. 9b). The

third step (block 40c of Fig. 9b) is to compute the partial derivative of

each neuron output u(t) with respect to each of the M network parame-

ters. Finally, the computation step of block 42' of Fig. 9b employs the

integral of this derivative to compute the change to the corresponding

network parameter at the end of the current learning cycle.

2O

25

3O

NUMERICAL SIMULATIONS

The embodiment of Fig: 8 has been applied to the problem of learn-

ing two trajectories: a circle and a figure eight in computer simulations.

Results of applying prior art techniques to these problems can be found

in the literature, and they offer sufficient complexity for illustrating the

computational efficiency of our proposed formalism.

In the following computer simulations, the network that was trained

to produce these trajectories using the present invention involved 6 fully

connected neurons, with no input, 4 hidden and 2 output units. An

additional "bias" neuron was also included. In these simulations, the

dynamical systems were integrated using a first order finite difference

approximation. The neuron sigmoidal nonlinearity was modeled by a

hyperbolic tangent. Throughout, the decay constants nn, the neural

gains ")'n, and _ were set to one. Furthermore, ¢3 was selected to be 7/9.

17

5

10

15

2O

For the learning dynamics, AT was set to 6.3 and 77 to 0.015873.

two output units were required to oscillate according to

a5 (t) = A sin _at

ac (t) = ,4 cos ,or

for the circular trajectory, and, according to

as(t) = Asin ._t

as (t) = A sin 2_t

The

(16)

(16b)

(17a)

(17b)

for the figure eight trajectory. Furthermore, we took ,4 = 0.5 and a; = 1.

Initial conditions were defined at to = 0. Plotting a5 versus a6 produces

the "desired" trajectory. Since the period of the above oscillations is

27r, t/ = 27r time units are needed to cover one cycle. We selected

At = 0.1, to cover one cycle in approximately 63 time steps.

Circular Trajectory

In order to determine the capability and effectiveness of the algo-

rithm, three cases were examined. As initial conditions, the values of u_

were assumed to be uniform random numbers between -0.01 and 0.01 for

the simulation studies referred in the sequel as "Case - 1" and "Case -

2". For Case - 3, we set u,, equal to zero, except u6 which was set to 0.5.

The synaptic interconnections were initialized to uniform random values

between -0.1 and +0.1 for all three experiments.

25

3O

CASE - 1.

The training was performed over t I = 6.5 time units(i.e., 65 time

intervals). A maxinmm number of 500 iterations was allowed. The re-

sults shown in Fig. 10 were obtained by starting the network with the

same initial conditions, u,,(0), as used for training, the learned values of

the synaptic interconnections, T,,,,,, and with no teacher forcing (A = 0).

As we can see, it takes about 2 cycles until the network reaches a consis-

tent trajectory. Despite the fact that the system's output was plotted for

more than 15 cycles, only the first 2 cycles can be distinguished. Figure

18

13 demonstrates that most of the learning occurred during the first 300

iterations.

10

15

2O

25

CASE - 2.

Here, we decided to increase the length of the trajectory gradually.

A maximum number of 800 learning iterations was now allowed. The

length of the training trajectory was 65 time intervals for the first 100

iterations, and increased every 100 iterations by 10 time intervals. There-

fore, it was expected that the error flmctional would increase whenever

the length of the trajectory was increased. This was indeed observed, as

may be seen from the learning graph, shown in Fig. 13. The output of

the trained network is illustrated in Fig. 11. Here again, from 15 recall

cycles, only the first two (needed to reach the steady orbit) are distin-

guishable and the rest overlap. Training using greater trajectory lengths

yielded a recall circle much closer to the desired one than in the previous

case. From Fig. 13. one can see that the last 500 iterations did not en-

hance dramatically the performance of the network. Thus, for practical

purposes, one may stop the training after the first 300 iterations.

CASE - 3.

The selection of appropriate initial conditions for un plays an im-

portant role in the effectiveness of the learning. Here, all initial values of

us were selected to be exactly zero except the last unit, where u6 - 0.5

was chosen. This corresponds to an initial point on the circle. The length

of the trajectory was increased successively, as in the previous case. In

spite of the fact that we allowed the system to perform up to 800 itera-

tions, the learning was essentially completed in about 200 iterations, as

shown in Fig. 13. The results of the network's recall are presented in

Fig. 12, which shows an excellent match.

3O

Figure Eight Trajectory

For this problem, the synaptic interconnections were initialized to

uniform random values between -1 and +1. As initial conditions, the

Values of u, were assumed to be uniform random numbers between -0.01

and 0.01. The following three situations were examined.

CASE- 4.

19

5

The training was performed over tl -- 6.5 time units(i.e., 65 time

intervals). A maximum number of 1000 iterations was allowed. The re-

sults shown in Fig. 14 were obtained by starting the network with the

same initial conditions, u,,(0), as used for training, the learned values of

the synaptic interconnections, T,,,, and with no teacher forcing ()_ = 0).

As we can see, it takes about 3 cycles until the network reaches a con-

sistent trajectory. Despite the fact that the system's output was plotted

for more than 15 cycles, only the first 3 cycles can be distinguished.

10

15

2O

25

CASE- 5.

Here, we again decided to increase the length of the trajectory grad-

ually. A nmxinmm number of 1000 iterations was now allowed. The

length of the training trajectory was 65 time intervals for the first 100

iterations, and was increased every 100 iterations by 5 time intervals.

Therefore, it was again expected that the objective functional would in-

crease whenever the length of the trajectory was increased. This was

indeed observed, as may be seen from the learning graph, shown in Fig.

17. The output of the trained network is illustrated in Fig. 15. Here

again, from 15 recall cycles, only the first three (needed to reach the

steady orbit) are distinguishable, and the rest overlap. As a direct result

of training using greater trajectory lengths, orbits much closer to the

desired one than in tile previous case were obtained.

CASE- 6.

The learning in this case was performed under conditions similar to

CASE - 5. but with the distinction that)_ was modulated according to

Eq. (12). The results of the network's recall are presented in Fig. 16,

and demonstrate a dramatic improvement with respect to the previous

two cases.

3O

It is important to keep in mind the following observations with re-

gard to the foregoing simulation results:

1) For the circular trajectory. A was kept constant throughout the

simulations and not modulated according to Eq. (12). As we can see

from Fig. 13, in cases 1 and 2 the error functional was not reduced to

zero. Hence, a discrepancy in the functional form of the neural activation

2O

10

15

20

dynamics used during the learning and recall stages occurred. This was

a probable cause for the poor performance of the network. In case 3,

however, the error functional was reduced to zero. Therefore, the teacher

forcing effect vanished by the end of the learning.

2) For the figure eight trajectory, the differences between cases 5 and

6 lies in the modulation of A, (i.e., the amplitude of the teacher forcing).

Even though in both cases the error functional was reduced to a negli-

gible level, the effect of the teacher forcing in case 5 was not completely

eliminated over the entire length of the trajectory. This points toward

the fact that modulation of A not only reduces the number of iterations

but also provides higher quality results.

In order to assess the effectiveness of the new method, the forego-

ing simulations applied it to two examples of representative complex-

ity which have recently been analyzed in 'the open literature. We have

demonstrated that a circular trajectory can be learned in approximately

200 iterations compared to the 12000 reported by Pearlmutter (1989).

A figure eight trajectory was achieved in under 500 iterations compared

to 20000 previously required. Most important, however, is the quality of

the obtained results. The trajectories computed using our new method

are much closer to the target trajectories than was reported in previous

studies.

25

30

While the invention has been described in accordance with the pre-

ferred embodiment in which the feedback is reduced as a function of

the error E(r) over successive learning cycles, it may be that in some

instances such a decrease will not be steady and may not even occur in

individual cycles. Moreover, other schemes to modulate the feedback in

accordaalce with the invention may be employed. For example, in those

cases where a steady decrease in the error E(r) over successive cycles

may be generally expected, the feedback could be modulated as a func-

tion of the number of cycles independently or dependently of the error

E(T). Moreover, while the invention has been described with reference

to a gradient descent algorithm used to adjust both the synapse weights

and the neuron gains, any subset or all of these neural network parame-

21

ters or other neural network parameters may be adjusted. For example,

it may be that only the synapse weights would be adjusted at the end of

each repetitive cycle.

5

While the invention has been described in connection with training

a neurM network with time-varying training vectors and target vectors,

the invention may also be applied in training neural networks with time-

invariant training vectors and target vectors.

10

While the invention has been described in detail by specific reference

to preferred embodiments of the invention, it is understood that varia-

tions and modifications thereof may be made without departing from the

true spirit and scope of the invention.

15

2O

25

3O

22

5

10

15

2O

FAST TEMPORAL NEURAL LEARNING USING

TEACHER FORCING

ABSTRACT OF THE INVENTION

A neural network is trained to output a time dependent target vec-

tor defined over a predetermined time interval in response to a time

dependent input vector defined over the same time interval by apply-

ing corresponding elements of the error vector, or difference between the

target vector and the actual neuron output vector, to the inputs of cor-

responding output neurons of the network as corrective feedback. This

feedback decreases the error and quickens the learning process, so that

a much smaller number of training cycles are required to complete the

learning pro('ess. A conventional gradient descent algorithm is employed

to update the neural network parameters at the end of the predetermined

time interval. The foregoing process is repeated in repetitive cycles until

the actual output vector corresponds to the target vector. In the pre-

ferred embodiment, as the overall error of the neural network output

decreases during successive training cycles, the portion of the error fed

back to the output neurons is decreased accordingly, allowing the net-

work to learn with greater freedom from teacher forcing as the network

parameters converge to their optimum values. The invention may also

be used to train a neural network with stationary training and target

vectors.

25

30

N_' c_._eNo.NPO_/_'-<--5_-/< _

I,I

O l

I-- I
:) I
O. I
z!

N I

I,I I
or) Im

£L I

0 I

i--
Z_

0

• • r.. ,_-
u,=,=..,!

T

LnJZ

t'_AoA" "__,_.,:NO.r_PO,'d',--qS'-3 -/-r 0,,_

_n(t)

2_ nCSo 6
I nCt) _ _ u n(t) _ /_

riG. lb \ _

j°,o °n_o
In(t) _1 un(t+l) I /-6

n_n(t+1_

an(t)
nCSoIn(t)

nEs W \ un(t) / /-6

FIG. 4 \
- \ DESCENT

8------ ALGORITHM

NASA C_se No. NPO/_ _--S-_-/-CC'L-

AMPLITUDE

u3

oi

I
I

/I
I

I
, I I

,__y___.,
At

.-'-TIME

FIG. 3

AMPLITUDE

/

u',, (t+at)

u_(t)_u,,(t+dt)

e_(,)'{_,_'Ta_('+d')

I
I

I
I

I
I

I
I

Z_t

/
/

/

/

.-'-TIME

FIG. 5

t,_SA C',s0 l'.b. NPO_)d__--3-/-Cc'_-

 frr

 1111"

Im ° ° o°1

I
• 'P 0

C_ Y

W

A

_1 <:::1

-] I

i z_ "r"
ww_

w

_ ,
(-) II)

Z

_D

,'._<",c_ooNo.t_ro/<:7>'s-_'_''3-l'-c°`--
r,i ¢-, _)/-,i

3O

\

DEFINE NEURON TEMPORAL LEARNING BEHAVIOR

FOR M NETWORK PARAMETERS "Zw;,j;,Kw;,Tw;

<,n+<o-n "=+'o
.. r(]/,n(t)FOR nESI

WHERE In(t)=t(l_ e E(r))(]_n(t)i-_en(t) P,nES o

I
32_

DEFINE TRAINING SET:

(In(t)nesI:INPUT
(In (t)nES o :OUTPUT

FOR TIME INTERVAL to TO ty

INPUT (]_n(t) TO INPUT NEURONS

S I DURING TIME INTERVAL to TO tf

T f._38

iOBS RV <RRORS Ien(t)= _n(t)- Un(t) to

_JL
PERFORM GRADIENT DESCERT ALGORITHM

FOR EACH OF THE M NETWORK PERAMETERS-_#

,oJ

46-_iT _'/'+AT (WHERE A_T=t / -to)

f_A.,A Case I%.

DEFINE NEURON TEMPORAL LEARNING BEHAVIOR

30 FOR M NETWORK PARAMETERS "/'i.a/..Ki.Tw;

WHERE In (t, ={_:(t'/(_)_:_,I, en(t,, FOR nEs o

32_

34--_

36_

FIG.

DEFINE TRAINING SET:

(In (t)FOR n IN I :INPUT PAl-FERN

an(t) FOR n IN 0 :OUTPUT PATTERN

FOR TIME INTERVAL to TO tf

INPUT TEMPORAL PATTERN

(_n(t) (nIN I)TO INPUT

NEURONS Si DURING INTERVAL to TO tf

OBSERVE ERRORS en AT OUTPUT NEURONS

DURING to TO tf FOR n IN O:

en (t) =U,n (t)- un (t)

38_

9(1

t! _ e n (t)2 dt

E(T)=f n
2to

I_]ASACaseNo. N?O_--

#Oa_

COb---

4.Oc

DERIVE FORWARD SENSITIVITY EQUATIONS

FROM THE TEMPORAL LEARNING BEHAVIOR

11n,,_ + LAn,m Um,#-S n,_

SOLVE THE FORWARD SENSITIVITY EQUATIONS
M TIMES , ONCE FOR EACH OF THE M N-El'WORK

PARAMETERS FOR -,/!_/_.

COMPUTE
FOR EACH OF THE M

NETWORK PARAMETERS -.p,/_,

UPDATE THE M NETWORK PARAMETERS AS

FOLLOWS FOR THE/,/,thPARAMETER (-'f>M,);

"/'+ AT _ "_n
/('t'+Am)=._/_(T)-r/ f d'T'_ en(_')

•7- 8.,p

WHERE AT = 'Lf- to

FIG. 9b
I TRAINING 1FINISHED

NASA Case No. NPO /r_ _'S- __,/--F'_

0.6

0.0

I

0.0 0.6

0.6

0.0

I

0.0 0.6

FIG. i0 FIG. 11

0.6

0.0

I

0.0

FIG. 12

4

3

_2
i,i

1

0
0.6 0

CASE 1

-- CASE 2

-- CASE 3

%1 I I

200 400 600

LEARNING

;

BOO

ITERATIONS

FIG. 13

NASA Case No. NPO/c_"_. '_'-'_-/-(

0.6 0.6

0.0

I

0.0 0.6

0.0

-0.6
-0.6

I

0.0 0.6

FIG. 14 FIG. 15

0.6

-0.6
I

0.0

FIG. 16

5

4

"'2

1
06

0

CASE 1

0 200 400 600 800 1000

LEARNING ITERATIONS

FIG. 17

